
A Probabilistic Pareto Local Search based on Historical
Success Counting for Multiobjective Optimization

Xinye Cai,Xin Cheng
Computer Science and Technology

Nanjing University of Aeronautics and
Astronautics

Nanjing,Jiangsu, P. R. China
xinye@nuaa.edu.cn

Zhun Fan
Department of Electrical Engineering

Shantou University
Shantou, Guangdong, P. R. China

zfan@stu.edu.cn

ABSTRACT
In this paper, we propose a multiobjective probabilistic

Pareto local search to address combinatorial optimization
problems (COPs). The probability is determined by the
success counts of local search offspring entering an exter-
nal domination archive and this probabilistic information is
used to further guide the selection of promising solutions
for Pareto local search. In addition, simulated annealing
is integrated in this framework as the local refinement pro-
cess. This multiobjective probabilistic Pareto local search
algorithm (MOPPLS), is tested on two famous COPs and
compared with some well-known multiobjective evolution-
ary algorithms. Experimental results suggest that MOPPLS
outperforms other compared algorithms.

Categories and Subject Descriptors
D.2.0 [Computing Methodologies, Artificial Intelli-

gence]: Problem Solving, Control Methods, and Search—
Heuristic methods

Keywords
Multiobjective Optimization; Probabilistic; Parteo local

search; Aggregation

1. INTRODUCTION
Combinatorial optimization problems(COPs) have been

extensively studied by scientists for many years because of
their wide application in real life. EAs is a class of stochas-
tic search techniques that have already been successfully
applied to a wide range of optimization problems. Origi-
nally, EAs draw the inspiration from evolution and mimic
genetic operations such as crossover and mutation to sam-
ple, learn and adapt from a population of candidate solu-
tions. However, it takes them relatively long time to locate
the exact local optimum within the region of convergence
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when facing complex optimization problems [9]. Genetic lo-
cal searches [14], also referred to in the literature as Memetic
algorithms(MAs), Baldwinian EAs, Lamarckian EAs and
cultural algorithms, are extensions of EAs with the intro-
duction of individual learning as a separate process of local
refinement for accelerating search.

In addition, many real-world combinatorial optimization
problems also involve several conflicting objectives to be si-
multaneously optimized. Along with it, many local search
techniques in single objective heuristics such as variable neigh-
borhood search [11], guided local search [1], simulated an-
nealing [15] and ant colony optimization [6] have been gen-
eralized to solve multiobjective COPs. Different from single
objective optimization problem where a single optimal so-
lution exists, a multiobjective optimization problem usually
has a set of non-dominated solutions, which represent the
trade-off between the multiple objectives. Over the past two
decades, two different fitness assignment schemes for mut-
liobjective local search have been frequently used [10,17], as
follows.

• Parteo local search(domination) [12, 13]: It is consid-
ered as a natural extension of single objective local
search methods. It explores some or all of the neigh-
bors of a set of mutually non-dominated solutions to
find new non-dominated solutions for updating at each
generation. The replacement of non-dominated solu-
tions is based on the concept of Pareto dominance.

• Aggregation(decomposition) [16]: A multiobjective op-
timization problem(MOP) is transformed into a single
objective optimization problem by linearly or nonlin-
early aggregating all the objectives into a single ob-
jective. Under mild conditions, an optimal solution to
this single objective problem is Pareto-optimal to the
MOP. Thus, a single objective local search method can
be used for finding a set of Pareto optimal solutions by
solving a set of such single objective problems with dif-
ferent weights.

Motivated by [10], we propose an multiobjective proba-
bilistic Pareto local search based on aggregation in this pa-
per. In this paper, we propose a multiobjective probabilistic
Pareto local search to address combinatorial optimization
problems (COPs). The probability is determined by the
success counts of local search offspring entering an external
archive and this probabilistic information is used to further
guide the selection of promising solutions for Pareto local
search.
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The main contributions of this paper are as follows.

• A probabilistic Pareto local search framework is pro-
posed and the simulated annealing is integrated as
the local search metaheuristic, to tackle multiobjective
COPs.

• The proposed approach was tested on multiobjective
software next release problem(MONPR) and multiob-
jective traveling salesman problem(MOTSP) on syn-
thetic test instances and real test instances mined from
bug repository [20]. For the real test instances of
MONRP, our proposed multiobjective approaches are
compared with the state-of-the-art single objective ap-
proaches as well as well-known MOEAs. The results
show our approach outperforms all the other approaches
in comparison.

The rest of this paper is organized as follows. Since this
paper focuses on addressing multiobjective optimization prob-
lems, Section 2 revisits basic concepts of multiobjective op-
timization(MOP). The following Section 3 is mainly dedi-
cated to the detailed description of our proposed multiob-
jective probabilistic Pareto local search framework. Sec-
tion 4 introduces two representative benchmark multiob-
jective COPs, that are multiobjective traveling salesman
problem (MOTSP) and multiobjective next release prob-
lem (MONRP). Experimental studies and discussions are
detailed in Section 5. The final conclusions of this paper is
made in Section 6.

2. MOP AND MOEAS
Since this paper focuses on addressing multiobjective opti-

mization, this section contributes to the introduction of mul-
tiobjective optimization problems and multiobjective evolu-
tionary algorithms. In the multiobjective optimization prob-
lem(MOP), two or more usually conflicting objectives are
required to be optimized simultaneously. A MOP can be
defined as:

Given a problem involving n decision variables x1, x2, . . . , xn
in a search space X ⊂ <n, we assume, without loss of gener-
ality, m objectives f1(·), . . . , fm(·) in objective function space
Y ⊂ <m, are to be minimized.
Minimize f(~x) = ((f1(x1, x2, . . . , xn)), . . . , fm(x1, x2, . . . , xn))
The vector function is a mapping f : X→ Y.

In MOP, it is usually not possible to find a single solu-
tion which is optimal for all the objectives. Instead, many
good solutions may exist. These solutions are always “trade-
offs” or good compromises among the objectives. Since the
conventional concept of optimality does not hold, a con-
cept of Pareto optimality is adopted. The Pareto optimal-
ity concept, which was first proposed by Edgeworth and
Pareto [18], is formally defined as follows [3]:

Let ~x,~y be two vectors of decision variables in MOP. ~x is
considered to dominate ~y(written as ~x ≺ ~y) iff they satisfy
the conditions:

~x, ~y ∈ X, ∀i ∈ 1, . . . ,m|fi(~x) ≤ fi(~y)
~x, ~y ∈ X, ∃j ∈ 1, . . . ,m|fj(~x) < fj(~y)

(1)

On the contrary, a decision vector ~x is considered to be
a non-dominated solution iff there is no other solution that
satisfies eq.(1). The set of all non-dominated solutions forms
a Pareto optimal set :

The projection of the Pareto optimal set P in the m di-
mensional objective function space Y is called Pareto front,
F .

F = {(f1(~x), f2(~x), . . . , fm(~x))|~x ∈ P} (2)

3. THE PROPOSED ALGORITHM

3.1 The Framework
For convenience, the proposed approach is named as mul-

tiobjective probabilistic Pareto local search (MOPPLS). MOP-
PLS decomposes the MOP into N single objective optimiza-
tion subproblems. For simplicity, the weight sum approach
is adopted in this paper, it requires N weight vectors:

λj = (λj1, . . . , λ
j
m) j = 1, . . . , N. (3)

where λj ∈ Rm+ and
∑m
i=1 λ

j
i = 1, m is the number of objec-

tives. The k-th subproblem is:

minimize gwsk (x) =
∑m
i=1 λ

j
ifi(x) (4)

subject to x ∈ Ω

For each k = 1, . . . , N , set B(k) contains the indexes of the
T closest weight vectors to λk in terms of the Euclidean
distance. If i ∈ B(k), then subproblem i is defined as a
neighbor of subproblem k. At each generation, the proposed
framework maintains several populations as follows. 1) De-
composition population P = {x1, . . . , xN}, where xk is the
best solution found so far for subproblem k. 2) Domination
population A, which contains N solutions selected by using
the non-dominated sorting selection and crowding distance
methods proposed in [3, 4]. 3) L, which contains the solu-
tions generated by local search and Y , which contains the
solutions generated by global search.

The pseudocode of the framework is presented in Algo-
rithm 1. It works as follows:

More detailed descriptions of Steps 1-4 are given as fol-
lows:

3.2 Initialization
A multiobjective optimization problem is originally de-

composed into a number of subproblems based on eq. 3
. A multiobjecitve COP is decomposed into corresponding
N subproblems, when N uniformly distributed weight vec-
tors λ1, . . . ,λN are generated. Meanwhile, a population P ,
each solution of which is the best solution found for each sub-
problem, is randomly generated and assigned to the external
archive A, which is used to store diverse non-dominated so-
lutions. The whole process of initialization is shown in Step
1 of Algorithm 1.

3.3 Local Search
The whole process of local search is shown in Step 2 of

Algorithm 1. In this step, local search(SA in our case) is
applied to the decomposition population P . Furthermore,
we consider individual subset of the population that should
undergo the refinement process, which is termed the issue of
the frequency of refinement and individual subset selection
in [19]. In this paper, we propose the adaptive mechanism
to adaptively select individuals for local search in Step 2a.
We also use two common strategies selecting solutions for
local search as the baseline for comparisons. The total two
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Algorithm 1:MOPLS
Input:

1. Multiobjective COPs;

2. a stopping criterion;

3. N : the number of subproblems; the population size of P
and A;

4. a uniform spread of N weight vectors: λ1, . . . ,λN ;
5. the size of the neighborhood of each subproblem, denoted

as T ;

Output: A set of non-dominated solutions A;
Step 1: Initialization:

a) Decompose the original multiobjective COP into N sub-
problems associated with λ1, . . . ,λN .

b) Generate an initial population P = {x1, . . . , xN} ran-
domly.

c) Assign A = P .

d) Compute the Euclidean distance between any two weight
vectors and obtain T closest weight vectors to each weight
vector. For each i = 1, . . . , N , set B(i) = {i1, . . . , iT },
where λi1 , . . . , λiT are the T closest weight vectors to λi.

Step 2:Probabilistic Local search

a) Select N solutions from P .

b) Perform local search to the selected solutions to generate
N ∗ J solutions.

Step 3: Global search

For each i ∈ P , do:

a) Randomly select two indexes k and l from B(i).

b) Apply one point crossover and bit-wise mutation operators
to xk and xl to generate yi for subproblem i.

Step 4: Population update

/* Use Y to update decomposition population P*/

a) For each i ∈ P , do:

b) If yi is generated from subproblem i, for each index k ∈
B(i), if gws(yi|λk) ≤ gws(xk|λk), then set xk = yi.

/* Use L to update decomposition population */

c) Set j = 1.

d) If Lj is generated from subproblem i, for each index k ∈
B(i), if gws(Lj |λk) ≤ gws(xk|λk), then set xk = Lj .

e) Set j → j + 1. If j ≤ J ∗N , go back to Step 4d.

/* Use Y and L to update domination population A*/

f) Merge Y with A and new solution set L in Local search;to
obtain Z = A ∪ Y ∪ L; sort the merged population Z
with fast non-dominated sorting and crowding distance ap-
proach of NSGA-II [4] and the best N solutions form the
new A.

Step 5: Termination

a) If stopping criteria are satisfied, terminate the algorithm
and output A. Otherwise, go to Step 2.

strategies of the selections of individuals for local search
are as follows.

1) Global search: For each generation, all the solutions in
the decomposition population P are selected to undergo lo-
cal refinement. The proposed approach that used this selec-
tion strategy for local search is called MOPLS in our paper.

2) Probabilistic Pareto local search algorithm: In this pa-
per, we proposed an adaptive solution selection for local
search based on the learning of domination archive. The
domination archive contains very valuable global conver-
gence and diversity information after applying Pareto domi-

nance and diversity maintenance mechanism. Such valuable
information can be used to guide the selection of solutions
in the decomposition population for local search. In this
paper, we adopt non-dominated sorting and crowding dis-
tance method in NSGA-II. More detailed description of this
mechanism is as follows.

Step 1 Initialization: Initialize P and A.

Step 2 Local Search: Perform local search to P or A and
generate a set of new solutions L.

Step 3 Global Search: Perform global search to generate
a set of N solutions Y from P .

Step 4 Population Update: Use Y and L to update P
and A.

Step 5 Stopping Condition: If a preset stopping condi-
tion is met, output A. Otherwise, go to Step 2.

Multiple new solutions are generated by the local search
procedure. A new solution is called successful if it enters A.
Note that whether or not a new solution enters A is deter-
mined by Pareto dominance sorting and crowding distance
method proposed in [3,4]. Thus the number of successful so-
lutions generated through local search procedures of a sub-
problem records the global convergence and diversity infor-
mation of this subproblem, which can be used to guide the
selection of subproblems for local search. We count dsi,g as
the number of successful solutions through the local search
of the ith subproblem at generation g. The total successful
solutions within a certain fixed number of pervious gener-
ations, defined as the learning generations(LGs), is used to
calculate the probability for each subproblem to be selected
for local search as follows.

At each generation G > LGs−1, the probability of choos-
ing the ith(i = 1, 2, . . . , N) subproblem is calculated by

probi,G =
Di,G∑N
i=1Di,G

(5)

where

Di,G =

∑G−1
g=G−LGs dsi,g∑G−1
g=G−LGs totali,g

+ ε, (i = 1, 2, . . . , N ;G > LGs)

(6)
Di,G represents the proportion of successful solutions through
the local search of the ith subproblem within the previ-
ous LGs. dsi,g is the number of non-dominated solutions
through the local search of the ith subproblem and totali,g
is the total number of non-dominated solutions through the
local search of all subproblems within the previous LGs. A
small constant value ε = 0.002 is used to avoid the possible
zero selection probabilities. We also normalize Di,G in order
to make the summation of Di,G for all subproblems into 1.

A Roulette Wheel Selection is applied to select a sub-
problem based on the probabilities calculated by eq. 5. The
selected subproblem(solution) undergoes local search meta-
heuristics. Each solution generates J solutions after ap-
plying local search. By repeating this procedure N times,
a population L with N ∗ J solutions is generated by the
local search procedure. To distinguish with our proposed
MOPPLS, the algorithm that uses the ordinary Pareto lo-
cal search is named as multiobjective Pareto local search
(MOPLS).

1165



3.4 Global Search
The whole process of the global search is presented in Step

3 of Algorithm 1. For the ith subproblem, two parents
are selected from its T neighboring subproblems, as shown
in Step 3a. In the following Step 3b, a simple one point
crossover and a bit-wise mutation operators are applied to
the parents to generate an offspring yi. By repeating this
procedure(Step 3a - 3b) N times, an offspring population
Y = {y1, . . . , yN} is generated.

3.5 Population Update
In Step 4, the newly generated offspring population Y

is used to update both P and A. For each solution yj in
Y , suppose it was generated from subproblem i. Step 4b
considers all the neighbors of the i-th subproblem, it replaces
all neighbors xk with yj if yj performs better than xk with
regard to the k-th subproblem. The update of domination
archive is presented in Step 4d. The offspring population Y
is merged with A, and population L is produced from the
local search in Step 2 of Algorithm 1, then the combined
population Z(the combinations of Y , A and L) is sorted by
the fast non-dominated sorting method and the crowding
distance procedure. The best N solutions are kept for A.

4. BENCHMARK PROBLEMS
In this paper, we consider two NP-hard multiobjective

COPs: the multiobjective software next release problem(an
instance of knapsack problem) and the multiobjective trav-
eling salesman problem. These combinatorial optimization
problems have been widely used on testing the performance
of various MOEAs [2,7, 21].

4.1 The Single and Biobjective Next Release
Problem

Assumes that an software system is associated with sev-
eral customers whose requirements need to be considered in
the next release. The set S of the customers is denoted by
si(1 ≤ i ≤ m)). The set R of all the requirements that need
to be considered is denoted by rj(1 ≤ j ≤ n)).

Implementation of each requirement need to be allocated
with certain number of resources, A cost vector C is repre-
sented by cj(1 ≤ j ≤ n)), where ci indicates that cost of the
requirement ri ∈ R. A request qij ∈ Q represent whether a
customer si request a requirement ri, qij=1 denotes that si
requests ri or qij=0 denotes not. Moreover, we assume that
customers can gain different profits, when their requests are
satisfied. We represent these profits as W=wi(1 ≤ i ≤ m)),
where wi denotes the profit when the requests of customer
si are satisfied in the next release.

The goal of the Single objective NRP is to find an op-
timal solution X?, to maximize Profit(X) =

∑
(i,1)∈X wi

gained by customers, which is the sum of profits gained by
the selected customers, subject to Cost(X) ≤ b, where b is
a predefined budget constraint and cost(X) =

∑
rk∈R(X) ck,

where R(X) =
⋃

(i,1)∈X,qij=1 {rj} is the requirements for

X. Similarly, For the multiobjective NRP, The total profit
for a solution X is defined by W (X) =

∑
(i,1)∈X si ,which is

the sum of profits gained by the selected customers. The re-
quired Cost for implementing the requirements of a solution
X is Cost(X) =

∑
rk∈R(X) ck, where R(X) =

⋃
(i,1)∈X,qij=1

{rj} is the requirements for X.

4.2 The Multiobjective Traveling Salesman Prob-
lems

The Traveling Salesman Problem (TSP) can be modeled
as a graph G(V,E), where V ={1, . . . , n}is the set of
vertices (cities) and E={ei,j}n×n is the set of edges (connec-
tions between cities). The task is to find a Hamiltonian cycle
of minimal length, which visits each vertex exactly once. In
the case of the multiobjective TSP (MOTSP), each edge ei,j
is associated with multiple values such as cost, length, trav-
eling time, etc. Each of them corresponds to one criterion.
Mathematically, the MOTSP can be formulated as:

minimize fi(π) =

n−1∑
j=1

c
(i)

π(j),π(j+1)+c
(i)

π(1),π(n) i = 1, ...,m

(7)

where π = (π(1), ..., π(n)) is a permutation of cities and c
(i)
s,t

is the cost of the edge between city s and city t regarding
criterion i.

5. EXPERIMENTAL STUDIES AND DISCUS-
SIONS

In this section, we conduct experiments on both MONRP
and MOTSP to validate our proposed MOPPLS. Both syn-
thetic and real test instances are used and the introduction
of them is included in this section, followed by the experi-
mental setups.

5.1 Test Instances and Experimental Setups
For both MONRP and MOTSP, randomly generated syn-

thetic test instances were used. For MONRP, four sets
of test instances were generated with various number of
requirements and customers. Similarly, MOTSP test in-
stances of different size were generated. For convenience,
the test instances of MONRP and MOTSP are named in the
following manners. For example, a 30-customers-and-300-
requirements MONRP test instance is denoted as(cust30
req300). A 500-city MOTSP is denoted as (tsp-c500). For
those real NRP test instances were mined from bug reposito-
ries of two open source software projects, namely, Eclipse [5]
and Gnome [8]. For convenience, test instances are denoted
as nrp-e and nrp-g, respectively, in this paper.

The parameter settings of the compared algorithms for
MONRP and MOTSP as follows: the population size of all
approaches is set to 200 for MONRP and 100 for MOTSP.
The number of neighbors in our proposed MOPLS is set to
10 for them. We set sensitivity of parameter J , which is set
to 5 in our experiments. For simulated annealing as the local
search meta-heuristic, its initial temperature(Te) is 100 and
scheduling factor(α) is set to 0.99. In addition, the number
of function evaluations for MONRP is set to 300,000 and all
the real test instances. In MOTSP, the number of function
evaluation is set to 600,000.

5.2 The Comparison of Various Algorithms
In this section, we conduct experiments to compare mul-

tiobjective Pareto local search(MOPLS) and probabilistic
Pareto local search(MOPPLS) with other classical multi-
objective optimization approaches. Fig. 1 shows the per-
formances of five algorithms in terms of hypervolume val-
ues during the whole evolutionary process on two MONRP
instances(both synthetic and real NRP Instances) and two
MOTSP instances. These five approaches include MOPLS,
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Figure 1: Convergence graphs in terms of IH obtained by various algorithms on MONRP and MOTSP

MOPPLS, NSGA-II, MOEA/D and MOEA/DD. NSGAII
and MOEA/D are well-known domination and decomposi-
tion based approach, respectively. MOEA/DD represents
the proposed MOPPLS when no probabilistic Pareto local
search is applied or MOPLS when no Pareto local search
is applied. The convergence plots in Fig. 1 show that
MOPPLS outperforms all other compared algorithms. To
validate the results statistically, we use Table 1 to illus-
trate the mean and standard deviation of hypervolume(IH),
obtained by the five algorithms on MONRP instances and
MOSTP instances. It can be observed in the Table 1 that
the proposed MOPLS outperforms NSGA-II, MOEA/D and
MOEA/DD in terms of hypervolume metric, on all test
instances, and MOPPLS further outperforms MOPLS. In
other words, MOPPLS always has the best performance
compared with other approaches in all test instances.

6. CONCLUSION
In this paper, we propose a multiobjective probabilistic

Pareto local search to address combinatorial optimization
problems (COPs). The probability is determined by the
success counts of local search offspring entering an exter-
nal domination archive and this probabilistic information is
used to further guide the selection of promising solutions
for Pareto local search. In addition, simulated annealing
is integrated in this framework as the local refinement pro-
cess. This multiobjective probabilistic Pareto local search
algorithm (MOPPLS), is tested on two famous COPs and
compared with some well-known multiobjective evolution-

Table 1: Mean and standard deviation of IH obtained by
various algorithms on MONRP and MOTSP

—– NSGAII MOEA/D MOEA/DD MOPLS MOPPLS

cust200req1000
mean 1.6518e+07 1.7793e+07 1.8665e+07 1.8732e+07 1.8743e+07

std 1.9904e+05 1.0193e+05 3.7785e+04 2.5803e+04 1.4609e+04

cust300req1500
mean 3.1568e+07 2.6528e+07 3.5676e+07 3.6332e+07 3.7184e+07

std 4.3181e+05 4.0284e+06 3.4274e+05 6.3052e+05 4.2604e+05

cust400req2000
mean 6.0050e+07 6.2748e+07 7.1928e+07 7.3481e+07 7.4301e+07

std 8.7525e+05 1.1012e+06 5.1543e+05 5.2123e+05 2.2610e+05

cust500req2500
mean 7.6671e+07 7.6933e+07 9.6964e+07 1.0136e+08 1.0239e+08

std 1.4111e+06 2.5817e+06 1.0428e+06 4.3044e+05 2.9678e+05

nrp-e1
mean 1.1617e+08 1.4268e+08 1.4619e+08 1.4635e+08 1.4655e+08

std 1.2917e+06 6.6765e+05 1.8761e+05 1.6063e+05 7.4332e+04

nrp-e2
mean 1.2142e+08 1.4758e+08 1.5142e+08 1.5158e+08 1.5178e+08

std 1.3331e+06 8.2047e+06 1.8171e+05 1.3569e+05 6.8453e+04

nrp-g1
mean 9.4570e+07 1.1548e+08 1.1737e+08 1.1746e+08 1.1749e+08

std 1.1625e+06 4.0086e+05 6.2844e+04 3.1842e+04 1.6110e+04

nrp-g2
mean 7.3694e+07 8.7304e+07 8.7821e+07 8.7826e+07 8.7829e+07

std 7.3188e+05 5.5541e+04 2.0288e+04 1.5200e+04 1.6525e+04

tsp-c300
mean 7.8647e+07 1.0028e+08 1.0172e+08 1.1757e+08 1.2200e+08

std 1.0299e+06 1.0677e+06 1.4351e+06 1.2675e+06 1.5036e+06

tsp-c400
mean 1.2177e+08 1.6419e+08 1.6759e+08 1.9890e+08 2.0758e+08

std 2.2033e+06 4.1758e+06 1.9895e+06 1.8527e+06 2.3867e+06

tsp-c500
mean 1.4621e+08 2.1001e+08 2.1324e+08 2.6294e+08 2.7813e+08

std 2.8420e+06 2.7892e+06 3.6784e+06 3.5585e+06 2.8940e+06

tsp-c600
mean 3.0337e+08 4.4358e+08 4.4479e+08 5.3350e+08 5.5480e+08

std 5.7284e+06 5.9462e+06 5.0039e+06 3.8984e+06 3.7734e+06
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ary algorithms. Experimental results suggest that MOPPLS
outperforms other compared algorithms.
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